Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets
نویسندگان
چکیده
We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.
منابع مشابه
Formation of Giant Planets
The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium; these gasses could not have condensed into solid planetesimals within the protoplanetary disk. Jupiter and Saturn are mostly hyd...
متن کاملSpectroscopic Abundance Analysis of Dwarfs in Young Open Cluster Ic4665
We report a detailed spectroscopic abundance analysis for a sample of 18 F-K dwarfs of the young open cluster IC 4665. Stellar parameters and element abundances of Li, O, Mg, Si, Ca, Ti, Cr, Fe and Ni have been derived using the spectroscopic synthesis tool SME (Spectroscopy Made Easy). Within the measurement uncertainties the iron abundance is uniform with a standard deviation of 0.04dex. No c...
متن کاملDust in brown dwarfs and extra-solar planets II. Cloud formation for cosmologically evolving abundances
Aims. Substellar objects have extremely long life-spans. The cosmological consequence for older objects are low abundances of heavy elements, which results in a wide distribution of objects over metallicity, hence over age. Within their cool atmosphere, dust clouds become a dominant feature, affecting the opacity and the remaining gas phase abundance of heavy elements. We investigate the influe...
متن کاملStructure and evolution of circumstellar disks during the early phase of accretion from a parent cloud
The process by which a cloud of gas and dust turns into stars and planets is one of the most intriguing questions in astrophysics. One of the steps in this process is the formation of a disk surrounding a young star. The disk is important because planets may eventually form within it and because it feeds mass to the star. The circumstellar disk has two phases in its evolution. The first is char...
متن کاملType Ii Migration of Planets on Eccentric Orbits
The observed extrasolar planets possess both large masses (with a median M sin i of 1.65 MJ) and a wide range in orbital eccentricity (0 < e < 0.94). As planets are thought to form in circumstellar disks, one important question in planet formation is determining whether, and to what degree, a gaseous disk affects an eccentric planet’s orbit. Recent studies have probed the interaction between a ...
متن کامل